\(\normalsize Lognormal\ distribution\ LogN(x,\mu,\sigma)\\ (1)\ probability\ density\\ \hspace{30px}f(x,\mu,\sigma)= {\large\frac{1}{\sqrt{2\pi}\sigma x}e^{-\frac{1}{2}\left(\frac{\ln(x)-\mu}{\sigma}\right)^2}}\\ (2) lower\ cumulative\ distribution\\ \hspace{30px}P(x,\mu,\sigma)={\large\int_{\small 0}^{\small x}}f(t,\mu,\sigma)dt\\ (3) upper\ cumulative\ distribution\\ \hspace{30px}Q(x,\mu,\sigma)={\large\int_{\small x}^{\small\infty}}f(t,\mu,\sigma)dt\\\) |
|